The Existence and Uniqueness of Solutions to The Riemann-Liouville Fractional Iterative System

Ke Jin^{1, a}, Yi Cheng^{1, b, *} and Shanshan Gao^{2, c}

¹Department of Mathematics, Bohai University, Jinzhou, China

²Department of information engineering, Liaoning Institute of Science and Engineering, Jinzhou, China

^a 1943271171@qq.com, ^b 645924181@qq.com, ^c gaoshanshan0218@126.com

Keywords: Existence; Uniqueness; Fractional order; Iterative equation

Abstract: This paper is devoted to study the iterative problem of Riemann-Liouville fractional derivative, give the Green's function of the boundary value problem, and introduce the Gronwall inequality. We consider an initial value problem for a Riemann-Liouville fractional derivative equation. The appliance utilized in this work, is the fixed point theorem of Leray-Schauder and the Gronwall inequality.

1. Introduction

It is well established that the fractional differential equation has always been the hot topic in mathematical research. In 2018, Cheng et al [1] established the precise controllability of the fractional order control system with time-varying delay. In [8], according to the Krasnosel' skii's fixed point theorem, X.Zhang et al obtained the solutions for the following system

$$\begin{cases} -D_{0+}^{p} y(t) = p(t) f(t, y(t)) - q(t), & t \in (0,1) \\ y(0) = y'(0) = 0, & y(1) = 0, \end{cases}$$
 (1)

where D^p denotes the Riemann-Liouville fractional derivative. Similar fractional order equation of form

$$\begin{cases} -D^{p} y(t) + p(t)f(t, y(t)) + q(t) = 0, & t \in (0,1) \\ y(0) = y'(0) = 0, & y(1) = 0, \end{cases}$$
 (2)

has been studied by Yujun Cui in [2] and the author obtained the characteristics of solution to the system. Paul W. Eloe and Tyler Masthay [3] studied an initial value problem of nonlinear Caputo system with the order of α , where $0 < \alpha < 1$, and developed some fundamental results. The iterative problems has been of considerable interest to mathematical community in recent years. Petuhov [6] studied the second-order iterative equation

$$l'' = \lambda l(l(t)), \tag{3}$$

where $l(t): [-T, T] \to [-T, T]$, and $l(0) = l(T) = \alpha$, under the conditions on λ and α . And then in [5], Wang considered the existence of the problem

$$\lambda' = f(\lambda(\lambda(t))), \lambda(a) = a, \tag{4}$$

where *a* is the end point of an interval. In 2018, Kaufamann [4] further obtained the existence and uniqueness of the solutions to the second-order iterative boundary-value equation

$$\lambda'' = f(t, \lambda(t), \lambda^{[2]}(t)), \tag{5}$$

DOI: 10.25236/icme.2019.053

where $\lambda^{[2]}(t) = \lambda(\lambda(t))$, with the conditions $\lambda(\rho) = \rho$, $\lambda(\gamma) = \gamma$ or $\lambda(\rho) = \gamma$, $\lambda(\gamma) = \rho$. Surprisingly little attention has been devoted into the fractional order iterative systems. Motivated by the above works, we consider the following iterative equations:

$$D^{\alpha}x(t) = f(t, x(t), x^{[2]}(t)), \rho \le t \le \gamma, n-1 < \alpha < n$$
 (6)

Where $x^{[2]}(t)$ means x(x(t)), D^{α} denotes the Riemann-Liouville fractional derivative. First, we introduce a definition and a lemma.

Definition 1.1. Define f to be in the interval (ρ, γ) , for any complex number $\alpha > 0$, we have the Riemann-Liouville fractional integral

$$D^{\alpha} f(t) = \frac{1}{\Gamma(\alpha)} \int_{\rho}^{t} f(\theta) (t - \theta)^{\alpha - 1} d\theta.$$
 (7)

Lemma 1.1. (see [7]) Suppose $\alpha > 0$, $s(t) \in [0,T)$ is locally integrable, and it is a nondecreasing and nonnegative function. Let Q_{α} be the Mittag-Leffler function. For $k(t) \in C[0,T)$ which is nonnegative, nondecreasing and continuous function. Let $\omega(t)$ be a nonnegative and locally function in C[0,T), which satisfying

$$\omega(t) \le s(t) + k(t) \int_{a}^{t} (t - \tau)^{\alpha - 1} \omega(\tau) d\tau. \tag{8}$$

Then

$$\omega(t) \le s(t) Q_{\alpha} \left(k(t) \Gamma(\alpha) t^{\alpha} \right), \tag{9}$$

where
$$Q_{\alpha}(z) = \sum_{i=0}^{\infty} \frac{z^{i}}{\Gamma(i\alpha + 1)}$$
.

Then we need the assumptions on the function of f as follows

- (H1) If there exist positive numbers N, Q, which satisfying the inequality $-K < f(t, \mu, \eta) < Q$, for all $t \in [\rho, \gamma], \mu, \eta \in R$.
- (H2) Suppose that the constants M, F > 0, and satisfied

$$(f(t, w_1, r_1) - f(t, w_2, r_2))(w_1 - w_2) \le M|w_1 - w_2|^2 + F|r_1 - r_2|^2,$$
 (10)

for all $t \in [\rho, \gamma]$, $w_1, w_2, r_1, r_2 \in R$.

Now, we introduce the main result in this article.

Theorem 1.1. For given the continuous function f, if it satisfies the assumptions (H1),(H2), then there exists a unique solution for the fractional system (1).

Proof of Theorem 1.1.

Consider the boundary value problem for the following Riemann-Liouville fractional integral equation

$$\begin{cases}
D^{\alpha} x(t) = f(t, x(t), x^{[2]}(t)), & u < t < v, \alpha > 0 \\
x^{(j)}(t) = 0, x(u) = u > 0, x(v) = v
\end{cases}$$
(11)

where $x^{[2]}(t) = x(x(t))$, $j \in (0, n-2)$. The solution of $J^{\alpha}D^{\alpha}x(t) = 0$ is

$$x(t) = \beta_1 t^{\alpha-1} + \beta_2 t^{\alpha-1} + \dots + \beta_n t^{\alpha-n}$$
, where $\beta_i \in R$, $i = 1, 2, \dots, n$.

We can deduce that, the solution is equivalent to

$$x(t) = \beta_1 t^{\alpha - 1} + \beta_2 t^{\alpha - 2} + \dots + \beta_n t^{\alpha - n} + \frac{1}{\Gamma(\alpha)} \int_{\rho}^{t} (t - \theta)^{\alpha - 1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta.$$
 (12)

By differentials,

$$x(t) = \beta_1 t^{\alpha - 1} + \frac{1}{\Gamma(\alpha)} (t - \theta)^{\alpha - 1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta.$$
 (13)

According to $x(\gamma) = \gamma$, it follows that

$$\gamma = \beta_1 \gamma^{\alpha - 1} + \frac{1}{\Gamma(\alpha)} \int_{\rho}^{\gamma} (\gamma - \theta)^{\alpha - 1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta, \tag{14}$$

then we have

$$\beta_{1} = \gamma^{2-\alpha} + \frac{t^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)} \int_{\rho}^{\gamma} (\gamma - \theta)^{\alpha-1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta.$$
(15)

Substitute β_1 into (3), we obtain that

$$x(t) = \gamma^{2-\alpha} t^{\alpha-1} - \frac{t^{\alpha-1}}{\gamma^{\alpha-1} \Gamma(\alpha)} \int_{\rho}^{\gamma} (\gamma - \theta)^{\alpha-1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta$$

$$+ \frac{1}{\Gamma(\alpha)} \int_{\rho}^{t} (t - \theta)^{\alpha-1} f(\theta, x(\theta), x^{[2]}(\theta)) d\theta$$

$$= \gamma^{2-\alpha} t^{\alpha-1} + \int_{\rho}^{\gamma} G(t, \theta) f(\theta, x(\theta), x^{[2]}(\theta)) d\theta,$$
(16)

where

$$G(t,\theta) = \frac{1}{\Gamma(\alpha)} \begin{cases} (t-\theta)^{\alpha-1} - \left(\frac{t}{\gamma}\right)^{\alpha-1} \cdot (\gamma-\theta)^{\alpha-1}, & \rho \leq \theta \leq t \leq \gamma \ (17) \\ -\left(\frac{t}{\gamma}\right)^{\alpha-1} \cdot (\gamma-\theta)^{\alpha-1}, & \rho \leq t \leq \theta \leq \gamma \end{cases}$$

Define the operator $T_1: C[0,T] \to C[0,T]$, by $T_1x(t) := \gamma^{2-\alpha}t^{\alpha-1} + \int_{\rho}^{\gamma} G(t,\theta)f(\theta,x(\theta),x^{[2]}(\theta))d\theta$, then we have

$$\begin{split} \left|T_{1}x(t)\right| &= \left|\gamma^{2-\alpha}t^{\alpha-1} + \int_{\rho}^{\gamma}G(t,\theta)f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta\right| \\ &= \left|\gamma^{2-\alpha}t^{\alpha-1} + \frac{1}{\Gamma(\alpha)}\int_{\rho}^{t}(t-\theta)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta - \frac{t^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-\theta)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &\leq \left|\gamma^{2-\alpha}t^{\alpha-1}\right| + \frac{1}{\Gamma(\alpha)}\int_{\rho}^{t}(t-\theta)^{\alpha-1}\left|f\left(\theta,x(\theta),x^{[2]}(\theta)\right)\right|d\theta \\ &+ \frac{t^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-\theta)^{\alpha-1}\left|f\left(\theta,x(\theta),x^{[2]}(\theta)\right)\right|d\theta \\ &\leq \left|\gamma^{2-\alpha}t^{\alpha-1}\right| + \frac{Q}{\Gamma(\alpha)}\int_{\rho}^{t}(t-\theta)^{\alpha-1}d\theta + \frac{Kt^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-\theta)^{\alpha-1}d\theta \\ &\leq \left|\gamma^{2-\alpha}\lambda_{1}\right| + \frac{(Q\gamma^{\alpha-1} + K\lambda_{1})(\gamma-\rho)^{\alpha}}{\alpha\gamma^{\alpha-1}\Gamma(\alpha)}, \end{split}$$

where $\lambda_1 = \max\{\rho^{\alpha-1}, \gamma^{\alpha-1}\}$, so we get the uniform boundedness of the function. Next we shall present the equicontinuity,

$$\begin{split} \left|T_{1}x(t+\varepsilon)-T_{1}x(t)\right| &= \gamma^{2-\alpha}\left(t+\varepsilon\right)^{\alpha-1}-\gamma^{2-\alpha}t^{\alpha-1}-\frac{\left(t+\varepsilon\right)^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-\theta)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &+ \frac{t^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-s)\theta^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta + \frac{1}{\Gamma(\alpha)}\int_{\rho}^{t+\varepsilon}(t+\varepsilon-\theta)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &- \frac{1}{\Gamma(\alpha)}\int_{\rho}^{t}(t-\sigma)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &= \gamma^{2-\alpha}[\left(t+\varepsilon\right)^{\alpha-1}-t^{\alpha-1}\right] + \frac{t^{\alpha-1}-\left(t+\varepsilon\right)^{\alpha-1}}{\gamma^{\alpha-1}\Gamma(\alpha)}\int_{\rho}^{\gamma}(\gamma-\theta)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &+ \frac{1}{\Gamma(\alpha)}\int_{t}^{t+\varepsilon}\left(t+\varepsilon-\theta\right)^{\alpha-1}f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta + \frac{1}{\Gamma(\alpha)}\int_{\rho}^{t}\left[\left(t+\varepsilon-\theta\right)^{\alpha-1}-\left(t-\theta\right)^{\alpha-1}\right]f\left(\theta,x(\theta),x^{[2]}(\theta)\right)d\theta \\ &\leq \gamma^{2-\alpha}[\left(t+\varepsilon\right)^{\alpha-1}-t^{\alpha-1}\right] + \frac{Q\left[\left(t+\varepsilon\right)^{\alpha-1}-t^{\alpha-1}\right]}{\gamma^{\alpha-1}\Gamma(\alpha)}\cdot\left(\gamma-\rho\right)^{\alpha}-\frac{Q\varepsilon^{\alpha}}{\alpha\Gamma(\alpha)} + \frac{Q}{\alpha\Gamma(\alpha)}\left[\varepsilon^{\alpha}-\left(t+\varepsilon-\rho\right)^{\alpha}+\left(t-\rho\right)^{\alpha}\right] \\ &= \gamma^{2-\alpha}\left[t^{\alpha-1}-\left(t+\varepsilon\right)^{\alpha-1}\right] + \frac{Q(\gamma-\rho)^{\alpha}}{\alpha\gamma^{\alpha-1}\Gamma(\alpha)}\left[\left(t+\varepsilon\right)^{\alpha-1}-t^{\alpha-1}\right] + \frac{Q}{\alpha\Gamma(\alpha)}\left[\left(t-\rho\right)^{\alpha}-\left(t+\varepsilon-\rho\right)^{\alpha}\right], \end{split}$$

it is easy to see that if $\varepsilon \to 0$, then $|T_1x(t+\varepsilon)-T_1x(t)| \to 0$, such that T_1 is equicontinuous, thus there has a solution of (2).

Since (H1), (H2) are satisfied, then we will prove that there has a unique solution of (2). According to the assumption (H1), one can obtain that

$$\begin{split} \frac{d(T_{1}x(t))}{dt} &= (\alpha - 1)\gamma^{2-\alpha}t^{\alpha - 1} - \frac{(\alpha - 1)t^{\alpha - 1}}{\gamma^{\alpha - 1}\Gamma(\alpha)} \int_{\rho}^{\gamma} (\gamma - \theta)^{\alpha - 1} f(\theta, x(\theta), x^{\lceil 2 \rceil}(\theta)) d\theta \\ &+ \frac{\alpha - 1}{\Gamma(\alpha)} \int_{\rho}^{t} (t - \theta)^{\alpha - 2} f(\theta, x(\theta), x^{\lceil 2 \rceil}(\theta)) d\theta \\ &\leq (\alpha - 1)\gamma^{2-\alpha} \lambda_{2} - \frac{K(\alpha - 1)\lambda_{3}(\gamma - \rho)^{\alpha} + \alpha\gamma^{\alpha - 1}Q(\gamma - \rho)^{\alpha - 1}}{\alpha\gamma^{\alpha - 1}\Gamma(\alpha)}, \end{split}$$

where $\lambda_2 = \max\{\rho^{\alpha-2}, \gamma^{\alpha-2}\}$, $\lambda_3 = \min\{\rho^{\alpha-2}, \gamma^{\alpha-2}\}$, which implies that T_1 is a bounded operator. If we assume that there exists two fixed points such as $\chi_1(t)$, $\chi_2(t)$, and $\chi_1(t) \neq \chi_2(t)$, where

$$\chi_1, \chi_2 \in C^{n-1}[\rho, \gamma],$$

we have

$$(\chi_1(t) - \chi_2(t))D^{\alpha}(\chi_1(t) - \chi_2(t)) = (f(t, \chi_1(t), \chi_1^{[2]}(t)) - f(t, \chi_2(t), \chi_2^{[2]}(t)))(\chi_1(t) - \chi_2(t)),$$

such that,

$$D^{\alpha} |\chi_{1}(t) - \chi_{2}(t)|^{2} \leq \frac{1}{2} (\chi_{1}(t) - \chi_{2}(t)) D^{\alpha} (\chi_{1}(t) - \chi_{2}(t))$$

$$\leq \frac{1}{2} (f(t, \chi_{1}(t), \chi_{1}^{[2]}(t)) - f(t, \chi_{2}(t), \chi_{2}^{[2]}(t))) (\chi_{1}(t) - \chi_{2}(t)),$$

integrating the both sides and according to (H2), then we have

$$\begin{aligned} &\left|\chi_{1}(t)-\chi_{2}(t)\right|^{2} \\ &\leq \frac{1}{2} \int_{\rho}^{\gamma} G(t,\theta) \left(f\left(\theta,\chi_{1}(\theta),\chi_{1}^{[2]}(\theta)\right)-f\left(\theta,\chi_{2}(\theta),\chi_{2}^{[2]}(\theta)\right)\right) \left(\chi_{1}(\theta)-\chi_{2}(\theta)\right) d\theta \\ &\leq \frac{\left(M+SF\right)}{2} \int_{\rho}^{\gamma} G(t,\theta) \left|\chi_{1}(t)-\chi_{2}(t)\right|^{2} d\theta, \end{aligned}$$

where $S = (\alpha - 1)\gamma^{2-\alpha}\lambda_2 - \frac{N(\alpha - 1)\lambda_3(\gamma - \rho)^{\alpha} + \alpha\gamma^{\alpha - 1}Q(\gamma - \rho)^{\alpha - 1}}{\alpha\gamma^{\alpha - 1}\Gamma(\alpha)}$, in addition of the Lemma 1.1, we

have $\frac{(M+SF)}{2} \int_{\rho}^{\gamma} G(t,\theta) |\chi_1(\theta) - \chi_2(\theta)|^2 d\theta \le 0$, such that $|\chi_1(t) - \chi_2(t)|^2 \le 0$, it is obvious that the conclusion contradicts the hypothesis, so the uniqueness is proved. The proof is completed.

Acknowledgments

This work were partially supported by National Natural Science Foundation of China (No. 11401042), Liaoning Natural Fund Guidance Plan (No. 2019-ZD-0508) and Young Science and Technology Talents "Nursery Seedling" Project of Liaoning Provincial Department of Education (No, LQ2019008).

References

- [1]. Y. Cheng, S. Gao, and Y. Wu. Exact controllability of fractional order evolution equations in banach spaces. Advances in Difference Equations, 2018(1):332, 2018.
- [2]. Y. Cui. Uniqueness of solution for boundary value problems for fractional differential equations. Applied Mathematics Letters, 51:48–54, 2016.
- [3]. P. W. Eloe and T. Masthay. Initial value problems for caputo fractional differential equations. Journal of Fractional Calculus and Applications, 9(2), 2018.
- [4]. E. R. Kaufmann. Existence and uniqueness of solutions for a second-order iterative boundary-value problem. Electronic Journal of Differential Equations, 2018(150):1–6, 2018.
- [5]. W. Ke. On the equation x'(t)=f(x(x(t))). Funkcialaj Ekvacioj, 33(3), 1990.
- [6]. V. R. Petukhov. On a boundary value problem. Trudy sem. teorii diff. uravn. otklon. arg, 3:252–255, 1965.
- [7]. H. Ye, J. Gao, and Y. Ding. A generalized gronwall inequality and its application to a fractional differential equation. Journal of Mathematical Analysis & Applications, 328(2):1075–1081.
- [8]. X. Zhang, L. Liu, and Y. Wu. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Mathematical and Computer Modelling, 55:1263–1274, 2012.