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Abstract: This paper is devoted to study the iterative problem of Riemann-Liouville fractional
derivative, give the Green’s function of the boundary value problem, and introduce the Gronwall
inequality. We consider an initial value problem for a Riemann-Liouville fractional derivative
equation. The appliance utilized in this work, is the fixed point theorem of Leray-Schauder and the
Gronwall inequality.

1. Introduction

It is well established that the fractional differential equation has always been the hot topic in
mathematical research. In 2018, Cheng et al [1] established the precise controllability of the
fractional order control system with time-varying delay. In [8], according to the Krasnosel’ skii’s
fixed point theorem, X.Zhang et al obtained the solutions for the following system

{— D2 y(t)= p(t)f (t, y(t))—-a(t) t<(01) 1)
y(0)=y'(0)=0, y@)=0,

where D" denotes the Riemann-Liouville fractional derivative. Similar fractional order equation of
form

{— DY)+ PO (L yD)+a)=0, t<(01) ()
y(0)=y'(0)=0, y(1)=0,
has been studied by Yujun Cui in [2] and the author obtained the characteristics of solution to the

system. Paul W. Eloe and Tyler Masthay [3] studied an initial value problem of nonlinear Caputo
system with the order of &, where 0 < <1, and developed some fundamental results. The iterative

problems has been of considerable interest to mathematical community in recent years. Petuhov [6]
studied the second-order iterative equation

1= 21(1(t)), ©)

wherel(t):[-T,T]1—[-T,T],and1(0)=1(T ) = &, under the conditions onAanda.And then in [5],
Wang considered the existence of the problem

A= 1(A(4(1))), A@)=a, (4)

where ais the end point of an interval. In 2018, Kaufamann [4] further obtained the existence and
uniqueness of the solutions to the second-order iterative boundary-value equation

"= £ 2, 29(1), (5)

where A%(t) = A(A(t)), with the conditions A(p)= p, A(y)=y or A(p) =, A(y)= p.Surprisingly little
attention has been devoted into the fractional order iterative systems. Motivated by the above works,
we consider the following iterative equations:
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Dx(t)= f(t, x(t) x?(), p<t<y,n-l<a<n (6)

Where x?(t) means x(x(t)), D” denotes the Riemann-Liouville fractional derivative. First, we
introduce a definition and a lemma.

Definition 1.1. Define f to be in the interval (p,y), for any complex numberc >0, we have the
Riemann-Liouville fractional integral

D" ft) = —— f f(0)(t-0)"do. )

T(a)
Lemma 1.1. (see [7]) Supposea >0, s(t)[0,T) is locally integrable, and it is a nondecreasing and

nonnegative function. LetQ, be the Mittag-Leffler function. Fork(t)e C[0,T)which is nonnegative,

nondecreasing and continuous fucntion. Letw(t)be a nonnegative and locally function in C[0,T),
which satisfying

w(t)< s(t)+ k(t)J: (t-7) " w(r)dz. (8)
Then

olt)<s(t)Q, (k(t)r(a)t), )
© Zi
h =) —.
whereQ, (z) ;r(iaﬂ)
Then we need the assumptions on the function of f as follows
(H1) If there exist positive numbers N, Q ,which satisfying the inequality — K < f (t, 2,77) < Q, for all

telp,yl, uneR.
(H2) Suppose that the constants M, F > 0, and satisfied
(F(t,w;, 1)~ (W, 1 )M, —w, ) < Mw, —w,|” +Flr -1, (20)

forallte[p,y], W, w,, 1,1, €R.
Now, we introduce the main result in this article.
Theorem 1.1. For given the continuous function f, if it satisfies the assumptions (H1),(H2), then

there exists a unique solution for the fractional system (1).
Proof of Theorem 1.1.

Consider the boundary value problem for the following Riemann-Liouville fractional integral
equation

{D”‘x(t)z f(t, x(t), x?(t)) u<t<v,a>0 (11)
xD(t)=0, x(u)=u >0, x(v)=v

where X! (t)= x(x(t)), j € (0,n—2).The solution of J*D*x(t)=0is
X(t)= At + pt* ™t +-+ Bt where B eR,i=12,---,n
We can deduce that, the solution is equivalent to

X()= Bt + Bt 2 ek BT 4 %J’; (t—o0)y 1 (0,x(0), x*(0))do. (12)
By differentials,

a—1 1 o—1 [21
x(t) = pit +@(t—6’) £ (6. x(0), X2 (6))d 6. (13)
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According to x(y) = y, it follows that
r=Br e[ -0y tox@)xPO)de,  14)
[(a)%
then we have
B = [ (r—0) " £(0,x(0) x7(0))0. (15)
1 7a—1l—~(a) p ’ ’
Substitute g, into (3), we obtain that
x(0) =y =SS [ =0 (0, x(0), 7 0))d0

iy E—er to.xe) x M @)o

=77t 4 [T G (t.0) T (0. x(0). X (9))d 0,

(16)

where

o (L) emort postsy ()
G(t,0)= (@) -
_[Lj (y—o)y, p<t=0<y
Ve
Define the operator T, : C[0,T]— C[0,T], by Tx(t):= y*“t** + IyG(t, 0)t(6,x(0),x?())de,
P

then we have

[ S I:G(t, 0)1 (6, x(6), x*(0))d 9‘

\Tlx(t] =

> e 1 t a1 [2] o v o1 [2]
yreret Ta)jp t—0)Y (6, x(0) x2(0))d6 - ;/atl—r(a)fp (y—o) (0. x(6).x?(0))6

<[p> e+ ﬁ [} -0yt (6.x(0) x?(0))do
+ %Fl(a) [ -yt (6. x(0), x(0))do

< ‘yzfatafl‘ + Q It (t _ 0)“71d6 + Kta71 J‘?’(}/ . g)afldg
C(a)? ¥ T(a)

2yl Qe+ KAy — p)
S‘?’ 11‘+ oy () '

whereﬂlzmax{p“’l,;/“’l}, so we get the uniform boundedness of the function. Next we shall
present the equicontinuity,
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(t + g)ail 4 -1 [2]
a—lr(a)jp(y_a) f(¢9. X(H), X (9))d¢9
tafl

4 a-1 121 1 (e -1 [2]
+mjp(7—s)e (6, x(0), x (0))d9+@jp (t+e-0)"1(0,x(0) x?(0)do

e oo o)k

F(a

Tx(t+e)-Tx(t) =" “(t+e) " -yt -

<

e o e S -0 ol

1

t+e a1 2] 1 ¢t - o .
el Ere-o) (6,x(6),x (9))d9+@.[p[(t+e—9) ~t-0)" ] (0.x(0) x?(6))d0

<prefeey e AU Ly Q7 Q o (ihpmpy 4t p)]

7 T(a) al(a) ol (a)
_ ralaa ] Qly-p) a1 o Q o a
S S R T R e SR STl

it is easy to see that ife >0, then|T1x(t+g)—T1x(t)| — 0,such thatT, is equicontinuous, thus there

has a solution of (2).

Since (H1), (H2) are satisfied, then we will prove that there has a unique solution of (2).
According to the assumption (H1), one can obtain that

GTd)) (Ta)t((t)) S S - ,1;)2 y ) [ (r =)y 1(0.x(6).x*1(e))Je

+ % [ &—0)2 1 (0.x(0), x*(0))do

< (a—1)yra, KDALY 05/1 1;8/)” R —p)

where 4, = max{ } Ay = mln{ ,y“‘z},which implies thatT, is a bounded operator. If we
assume that there eX|sts two fixed points such as ,(t), x,(t),and g (t) = z,(t), where

22, €C 7l
we have

(Zl(t)_Zz(t))Da(Zl(t)_Zz(t)): (f (tfll(t)’ 11[2](0)_ ( sz ) Zl
such that,

D ()~ 2, (1) < %(zl(t)— 2:(0))D (2 (1) — 2, (1))

1

S U FACPALC R (FACPALC) PACEFPAG)!
integrating the both sides and according to (H2), then we have

FAGEFAGH

< %IZG(L o)1 (0. 1.(6). 7))~ 1 (6. 2.(0). 2., (O)\2:(0)— x.(0))do

< (M £SP) o, 0) () — 2, ()P do,
2 L

where S = (a — 1)72-a Ay — N (0‘ —1)/13(7 - pl:+ a;/‘“Q(y - p)”“l
ay F(a)

G(t,0)1,(6)- 2,(6) dO <0, such that |z (t)- z,(t)* <0, it is obvious that the

conclusion contradicts the hypothesis, so the uniqueness is proved. The proof is completed.

,in addition of the Lemma 1.1, we

have MI
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